AN EXTENSION OF A RESULT OF RIBE

BΥ

ISRAEL AHARONI[®] AND JORAM LINDENSTRAUSS[®] [®]Department of Mathematics, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem, Israel; and [®]Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

It is proved that for every $1 \le p < \infty$, $1 \le q < \infty$ and for every sequence $\{p_n\}$, $1 \le p_n < \infty$, $p_n \to p$, the space $X = (\Sigma \oplus l_{p_n})_q$ (resp. $U = (\Sigma \oplus L_{p_n}(0,1))_q$) is uniformly homeomorphic to $X \oplus l_p$ (resp. $U \oplus L_p(0,1)$). This extends Ribe's result from the case p = 1 to general $p < \infty$ and thus provides examples of uniformly convex, uniformly homeomorphic Banach spaces which are not Lipschitz equivalent.

Recently Ribe [3] solved the problem of existence of two separable infinitedimensional Banach spaces which are uniformly homeomorphic, but not Lipschitz equivalent. His example was $X = (\Sigma \bigoplus L_{p_n})_q$ and $X \bigoplus L_p$ where $1 < q < \infty, 1 < p_n < \infty, p_n \rightarrow p$ and p = 1. As he noted at the end of his paper, his proof does not seem to apply to p > 1. Since it is desirable to have examples which are superreflexive, there is some interest in extending Ribe's result to the case p > 1. In this note we point out how to modify slightly Ribe's argument so as to apply for all $1 \le p < \infty$.

Our main result is the following:

THEOREM 1. Let $1 \leq p < \infty$, $\{p_n\}_{n=1}^{\infty}$ satisfy $1 \leq p_n < \infty$ and $\lim p_n = p$. Let $1 \leq q < \infty$, and let $X = (\Sigma \bigoplus l_{p_n})_q$ (resp. $U = (\Sigma \bigoplus L_{p_n}(0, 1))_q$). Then X (resp. U) is uniformly homeomorphic to $Y = X \bigoplus l_p$ (resp. $V = U \bigoplus L_p(0, 1)$).

It is clear that for $p_n \neq p$, $q \neq p$, X does not contain any subspace isomorphic to l_p . Hence, cf. [1], Y is not Lipschitz homeomorphic to any subset of X.

To prove the theorem we need some lemmas.

Received November 13, 1984

LEMMA 2. For every positive real number α , there exists a $\beta = \beta(\alpha) > 0$ such that for every Banach space X, and for every linear operator T from X onto X satisfying for every $x \in X$

$$\frac{1}{\alpha} \|\mathbf{x}\| \leq \|T\mathbf{x}\| \leq \alpha \|\mathbf{x}\|,$$

the function $S: X \rightarrow X$ defined by

$$Sx = \begin{cases} \frac{\|x\| \cdot Tx}{\|Tx\|}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

is a Lipschitz homeomorphism of X onto itself satisfying for every $x, y \in X$

$$\frac{1}{\beta} \|\mathbf{x} - \mathbf{y}\| \leq \|S\mathbf{x} - S\mathbf{y}\| \leq \beta \|\mathbf{x} - \mathbf{y}\|.$$

PROOF. By direct verification it is checked that $\beta = 2\alpha^2 + 1$ works.

As a consequence we get:

LEMMA 3. Let X be a Banach space for which GL(X) (= the group of isomorphisms) is connected. Then for every invertible isometry T of X onto itself, there exist maps $\{F_t \mid 0 \le t \le 1\}$ from X onto itself satisfying:

- (a) $F_0 = I$, $F_1 = T$;
- (b) {F_t | 0≤t≤1} are equi-Lipschitz homeomorphisms
 (i.e. ∃K>0 such that for every x, y ∈ X and every 0≤t≤1,
 (1/K)||x y ||≤||F_tx F_ty ||≤K||x y ||);
- (c) for every $0 \le t \le 1$ and for every $x \in X$, $||F_t x|| = ||x||$;
- (d) there exists a K > 0 such that for every $x \in X$ and for every $0 \le t, s \le 1$,

$$||F_{t}x - F_{s}x|| \leq K |t - s| ||x||,$$
$$||F_{t}^{-1}x - F_{s}^{-1}x|| \leq K |t - s| ||x||.$$

PROOF. Since GL(X) is arcwise connected, there exists a continuous map $g:[0,1] \rightarrow GL(X)$ such that g(0) = I, g(1) = T. Without loss of generality, g satisfies a Lipschitz condition (g can even be taken as a piecewise linear map). It is also clear that the maps $\{g(t) | 0 \le t \le 1\}$ are equi-isomorphisms of X (i.e., there exists $K_1 > 0$ such that for every $0 \le t \le 1$ and for every $x \in X$, $||x||/K_1 \le ||g(t)(x)|| \le K_1 ||x||$).

Define now, for every $0 \le t \le 1$,

$$F_t(\mathbf{x}) = \begin{cases} \frac{\|\mathbf{x}\| g(t)(\mathbf{x})}{\|g(t)(\mathbf{x})\|}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Note that

$$F_{\iota}^{-1}(x) = \begin{cases} \frac{\|x\|g(t)^{-1}(x)}{\|g(t)^{-1}(x)\|}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Using Lemma 2, it is easy to see that the maps $\{F_t \mid 0 \le t \le 1\}$ satisfy the requirements of the lemma.

Before stating the next lemma we recall the definition of Mazur's map $M_{p,q}: l_p \rightarrow l_q, 1 \leq p, q < \infty$:

$$M_{p,q}x(i) = \operatorname{sign} x(i) |x(i)|^{p/q}, \quad i = 1, 2, \dots$$

It is easy to check, and well known, that for all p, q and x, $||M_{p,q}x||^q = ||x||^p$, and that for every $\gamma > 0$ the maps $\{M_{p,q} \mid 1 \le p, q < \infty\}$ are equi-uniformly continuous on $\{x; ||x|| \le \gamma e^{1/|p-q|}\}$ (see e.g. [3] lemma 1).

We are going to use the following notation: for two sequences $x = (x_1, x_2, x_3, ...)$ and $y = (y_1, y_2, ...)$ of real numbers we let $\langle x, y \rangle$ be the sequence $(x_1, y_1, x_2, y_2, ...)$. In the direct sum $l_p \bigoplus l_q \bigoplus l_r$ we take as the norm of an element the sum of the norms of its three components.

LEMMA 4. Let $1 \le p < \infty$. Then for every $1 \le q, r < \infty$ there exist maps

$$\{G_t = G_{i,q,r} : l_p \bigoplus l_q \bigoplus l_r \to l_q \bigoplus l_r \mid 0 \le t \le 1\}$$

such that:

- (a) For every $0 \le t \le 1$, G_t is a one to one map onto $l_q \bigoplus l_r$.
- (b) For every $\gamma > 1$ the maps

$$\{G_{\iota,q,r} \mid 0 \leq t \leq 1, 1 \leq q, r < \gamma\}$$

are equi-uniformly continuous on the sets

$$D_{q,r} = \{ w \in l_p \bigoplus l_q \bigoplus l_r \mid \| w \| \leq \gamma e^{1/c_{q,r}} \}$$

where $c_{q,r} = \max\{|p - q|, |p - r|\}$, and the maps

$$\{G_{\iota,q,r}^{-1} \mid 0 \leq t \leq 1, 1 \leq q, r < \gamma\}$$

are equi-uniformly continuous on the sets $G_{t,q,r}(D_{q,r})$.

(c) For every $\gamma > 1$, the maps $G_{t/b,q,t}(w)$ and $G_{t/b,q,t}^{-1}(w)$ with $1 \le q, r < \gamma$, $||w|| \le b$ and $1 \le b \le \gamma e^{1/c_{q,t}}$ are equi-uniformly continuous functions of t on [0, b]. (d) For every $0 \le t \le 1$, let $G_t(z, x, y) = (u_t, v_t)$, then

$$\| z \|^{p} + \| x \|^{q} + \| y \|^{r} = \| u_{t} \|^{q} + \| v_{t} \|^{p}.$$

(e) $G_{0}(z, x, y) = (\langle M_{p,q}z, x \rangle, y), \ G_{1}(z, x, y) = (x, \langle M_{p,r}z, y \rangle).$

PROOF. For a sequence $x = (x_1, x_2, x_3, ...)$ of reals put $x^O = (x_1, x_3, x_5, ...)$ and $x^E = (x_2, x_4, x_6, ...)$. Observe that in our notation $x = \langle x^O, x^E \rangle$.

Define $T: l_p \bigoplus l_p \rightarrow l_p \bigoplus l_p$ by

$$T(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{E}, \langle \mathbf{x}^{O}, \mathbf{y} \rangle).$$

By identifying $l_p \oplus l_p$ with l_p we can consider T as an isometry of l_p onto itself. By [2], GL(l_p) is arcwise connected. By Lemma 3, there are maps $\{F_t \mid 0 \le t \le 1\}$ which satisfy requirements (a) through (d) of that lemma.

Let $M: l_q \oplus l_r \to l_p \oplus l_p$ be defined by

$$M(x, y) = (M_{q,p}(x), M_{r,p}(y)),$$

and put

$$G_t = M^{-1} F_t M G_0, \qquad 0 \le t \le 1.$$

It is easy to see that $\{G_t \mid 0 \le t \le 1\}$ satisfy the requirements of the lemma.

Of course, the lemma holds (with only minor changes in notation) also in the case of L_p spaces. With Lemma 4 at our disposal we can now follow Ribe's argument to complete the proof of Theorem 1. What follows is a reformulation of the argument in Ribe's paper [3].

PROOF OF THEOREM 1. Without loss of generality we can assume that for every n

$$\left|\frac{p_n}{p}-1\right| < \frac{\alpha}{pn}$$

where $0 < \alpha < 1/100$.

For every $y \in l_p \bigoplus X$, $y = (x_0, x_1, x_2, ...)$ define

$$u_n(\mathbf{y}) = \left((\|x_0\|^p + \|x_n\|^{p_n} + \|x_{n+1}\|^{p_{n+1}})^{q/p} + \sum_{i \neq 0, n, n+1} \|x_i\|^q \right)^{1/q}.$$

We consider X in an obvious way as a subspace of $l_p \oplus X$, and thus functions like

63

 u_n are also defined on X. Let $d = 10^{10}$ and let $b = 10d^{\alpha}$. Then $1 < b < d^{1/8}$, and for every $x, y \in l_p \bigoplus X$ satisfying

$$||x||, ||y|| \leq d^n$$
 or $u_n(x), u_n(y) \leq d^n$

we have

$$\frac{1}{b}\|x\| \leq u_n(x) \leq b\|x\|$$

and

$$|u_n(x)-u_n(y)|\leq b||x-y||.$$

Denote now for every $n \ge 1$:

$$A_n = \{ y \in l_p \bigoplus X : d^{n-1} \leq || y || \leq d^n \},$$

$$B_n = \{ y \in l_p \bigoplus X : b^3 d^{n-1} \leq u_n(y) \leq d^n / b^3 \},$$

$$B_n^- = \{ y \in l_p \bigoplus X : u_n(y) \leq b^3 d^{n-1} \},$$

$$B_n^+ = \{ y \in l_p \bigoplus X : u_n(y) \geq d^n / b^3 \},$$

 $C_n = A_n \cup (B_{n-1}^+ \cap A_{n-1}) \cup (B_{n+1}^- \cap A_{n+1})$ (where B_0^+ is the empty set).

Define now for every $y \in l_p \bigoplus X$

$$t_n(y) = \begin{cases} 0, & y \in B_n^-, \\ \frac{u_n(y) - b^3 d^{n-1}}{d^n/b^3 - b^3 d^{n-1}}, & y \in B_n, \\ 1, & y \in B_n^+. \end{cases}$$

Clearly $0 \leq t_n(y) \leq 1$ for all *n* and *y*.

For every *n*, let P_n be the projection of $l_p \bigoplus X$ on $l_p \bigoplus l_{p_n} \bigoplus l_{p_{n+1}}$, and let $Q_n = I - P_n$.

We define now $h: l_p \bigoplus X \to X$. If $y \in A_n$, $n \ge 2$ we define

$$h(\mathbf{y}) = G_{\iota_n(\mathbf{y}), P_n, P_{n+1}}(P_n(\mathbf{y})) \bigoplus Q_n(\mathbf{y})$$

and for $||y|| \leq d$, we define

$$h(y) = G_{1,p_1,p_2}(P_2(y)) \oplus Q_2(y).$$

It is easy to see that for every *n* and for every $y \in B_n^+ \cap B_{n+1}^-$ we have

$$h(y) = G_{1,p_n,p_{n+1}}(P_n(y)) \bigoplus Q_n(y) = G_{0,p_{n+1},p_{n+2}}(P_{n+1}(y)) \bigoplus Q_{n+1}(y).$$

Since $\{x : ||x|| = d^n\} \subset B_n^+ \cap B_{n+1}^-$, it follows that the definition of h is consistent.

We shall prove now that h is a uniform homeomorphism. Notice first that for every $y \in C_n$, $u_n(h(y)) = u_n(y)$. Hence $h(B_n) \subset B_n \cap X$ for every n.

It is also clear that for every $n \ge 1$

$$h((B_n^+ \cap A_n) \cup (B_{n+1}^- \cap A_{n+1})) \subset [(B_n^+ \cap A_n) \cup (B_{n+1}^- \cap A_{n+1})] \cap X.$$

Hence $h(C_n) \subset C_n \cap X$ for every *n*.

Now for every $y_1, y_2 \in l_p \bigoplus X$ such that $||y_1 - y_2|| \le 1$, there exists an $n \ge 1$ such that $y_1, y_2 \in C_n$. Hence for i = 1, 2

$$h(\mathbf{y}_i) = G_{t_n(\mathbf{y}_i), p_n, p_{n+1}}(P_n(\mathbf{y}_i)) \bigoplus Q_n(\mathbf{y}_i).$$

The uniform continuity of h follows now by (b) and (c) of Lemma 4.

Notice that for every $x \in C_n \cap X$, $h^{-1}(x) = G_{t_n(x),p_n,p_{n+1}}^{-1}(P_n(x)) \bigoplus Q_n(x)$. Hence, by the same reasoning, h^{-1} is uniformly continuous. This proves the theorem.

REFERENCES

1. P. Mankiewicz, On the differentiability of Lipschitz mappings in Frechét spaces, Studia Math. 45 (1973), 15–29.

2. B. S. Mitjagin, The homotopy structure of the linear group of a Banach space, Russian Math. Surv. 25 (1970), 59-103.

3. M. Ribe, Existence of separable uniformly homeomorphic nonisomorphic Banach spaces, Isr. J. Math. 48 (1984), 139–147.