AN EXTENSION OF A RESULT OF RIBE

BY

ISRAEL AHARONI^ª AND JORAM LINDENSTRAUSS[®] *°Department of Mathematics, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem, Israel; and bDepartment of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel*

ABSTRACT

It is proved that for every $1 \leq p < \infty$, $1 \leq q < \infty$ and for every sequence $\{p_n\}$, $1 \leq p_n < \infty$, $p_n \to p$, the space $X = (\Sigma \bigoplus l_{p_n})_q$ (resp. $U = (\Sigma \bigoplus L_{p_n}(0,1))_q$) is uniformly homeomorphic to $X \oplus l_n$ (resp. $U \oplus L_n(0, 1)$). This extends Ribe's result from the case $p = 1$ to general $p < \infty$ and thus provides examples of uniformly convex, uniformly homeomorphic Banach spaces which are not Lipschitz equivalent.

Recently Ribe [3] solved the problem of existence of two separable infinitedimensional Banach spaces which are uniformly homeomorphic, but not Lipschitz equivalent. His example was $X = (\Sigma \oplus L_{p_n})_q$ and $X \oplus L_p$ where $1 < q < \infty$, $1 < p_n < \infty$, $p_n \rightarrow p$ and $p = 1$. As he noted at the end of his paper, his proof does not seem to apply to $p > 1$. Since it is desirable to have examples which are superreflexive, there is some interest in extending Ribe's result to the case $p > 1$. In this note we point out how to modify slightly Ribe's argument so as to apply for all $1 \leq p < \infty$.

Our main result is the following:

THEOREM 1. Let $1 \leq p < \infty$, $\{p_n\}_{n=1}^{\infty}$ *satisfy* $1 \leq p_n < \infty$ *and* $\lim p_n = p$. Let $1 \leq q < \infty$, and let $X = (\Sigma \bigoplus l_{p_n})_q$ (resp. $U = (\Sigma \bigoplus L_{p_n}(0, 1))_q$). *Then* X (resp. U) is *uniformly homeomorphic to* $Y = X \bigoplus l_p$ (resp. $V = U \bigoplus L_p(0, 1)$).

It is clear that for $p_n \neq p$, $q \neq p$, X does not contain any subspace isomorphic to l_p . Hence, cf. [1], Y is not Lipschitz homeomorphic to any subset of X.

To prove the theorem we need some lemmas.

Received November 13, 1984

$$
\frac{1}{\alpha}\|x\| \leq \|Tx\| \leq \alpha \|x\|,
$$

the function $S: X \rightarrow X$ defined by

$$
Sx = \begin{cases} \frac{\|x\| \cdot Tx}{\|Tx\|}, & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

is a Lipschitz homeomorphism of X onto itself satisfying for every $x, y \in X$

$$
\frac{1}{\beta} \|x - y\| \le \|Sx - Sy\| \le \beta \|x - y\|.
$$

PROOF. By direct verification it is checked that $\beta = 2\alpha^2 + 1$ works.

 \Box

Isr. J. Math.

As a consequence we get:

LEMMA 3. Let X be a Banach space for which $GL(X)$ (= the group of isomorphisms) is connected. Then for every invertible isometry T of X onto itself, there exist maps ${F_i | 0 \le t \le 1}$ from X onto itself satisfying:

- (a) $F_0 = I$, $F_1 = T$;
- (b) ${F_t | 0 \le t \le 1}$ are equi-Lipschitz homeomorphisms (i.e. $\exists K > 0$ such that for every $x, y \in X$ and every $0 \le t \le 1$, $(1/K)$ $x - y$ \leq $\|F_{i}x - F_{i}y\| \leq K \|x - y\|$;
- (c) for every $0 \le t \le 1$ and for every $x \in X$, $||F_{t}x|| = ||x||$;
- (d) there exists a $K > 0$ such that for every $x \in X$ and for every $0 \le t, s \le 1$,

$$
||F_t x - F_s x|| \le K |t - s| ||x||,
$$

$$
||F_t^{-1} x - F_s^{-1} x|| \le K |t - s| ||x||.
$$

PROOF. Since $GL(X)$ is arcwise connected, there exists a continuous map $g:[0,1] \to GL(X)$ such that $g(0) = I$, $g(1) = T$. Without loss of generality, g satisfies a Lipschitz condition (g can even be taken as a piecewise linear map). It is also clear that the maps $\{g(t)\}\$ $0 \le t \le 1$ are equi-isomorphisms of X (i.e., there exists $K_1 > 0$ such that for every $0 \le t \le 1$ and for every $x \in X$, $||x||/K_1 \le$ $||g(t)(x)|| \le K_1 ||x||$.

Define now, for every $0 \le t \le 1$,

$$
F_t(x) = \begin{cases} \frac{\|x\| g(t)(x)}{\|g(t)(x)\|}, & x \neq 0, \\ 0, & x = 0. \end{cases}
$$

Note that

$$
F_t^{-1}(x) = \begin{cases} \frac{\|x\|g(t)^{-1}(x)}{\|g(t)^{-1}(x)\|}, & x \neq 0, \\ 0, & x = 0. \end{cases}
$$

Using Lemma 2, it is easy to see that the maps ${F_i | 0 \le t \le 1}$ satisfy the requirements of the lemma.

Before stating the next lemma we recall the definition of Mazur's map $M_{p,q}: l_p \to l_q, 1 \leq p, q < \infty$:

$$
M_{p,q}x(i) = \text{sign } x(i) |x(i)|^{p/q}, \quad i = 1, 2, ...
$$

It is easy to check, and well known, that for all p, q and x, $||M_{p,q}x||^q = ||x||^p$, and that for every $\gamma > 0$ the maps $\{M_{p,q} \mid 1 \leq p, q < \infty\}$ are equi-uniformly continuous on $\{x; \|x\| \leq \gamma e^{1/|p-q|}\}$ (see e.g. [3] lemma 1).

We are going to use the following notation: for two sequences $x =$ $(x_1, x_2, x_3,...)$ and $y = (y_1, y_2,...)$ of real numbers we let $\langle x, y \rangle$ be the sequence $(x_1, y_1, x_2, y_2, \ldots)$. In the direct sum $l_p \bigoplus l_q \bigoplus l_r$ we take as the norm of an element the sum of the norms of its three components.

LEMMA 4. Let $1 \leq p < \infty$. Then for every $1 \leq q, r < \infty$ there exist maps

$$
\{G_t = G_{t,q,r} : l_p \oplus l_q \oplus l_r \rightarrow l_q \oplus l_r \mid 0 \leq t \leq 1\}
$$

such that:

- (a) *For every* $0 \le t \le 1$, G_t *is a one to one map onto* $l_q \oplus l_r$ *.*
- (b) *For every* $\gamma > 1$ *the maps*

$$
\{G_{t,q,r} \mid 0 \leq t \leq 1, 1 \leq q, r < \gamma\}
$$

are equi-uniformly continuous on the sets

$$
D_{q,r} = \{w \in l_p \oplus l_q \oplus l_r \mid ||w|| \leq \gamma e^{\frac{1}{c}a_r}\}
$$

where $c_{q,r} = \max\{|p - q|, |p - r|\}$, *and the maps*

$$
\{G_{t,q,r}^{-1} | 0 \le t \le 1, 1 \le q, r < \gamma\}
$$

are equi-uniformly continuous on the sets $G_{t,q,r}(D_{q,r})$.

(c) For every $\gamma > 1$, the maps $G_{t/b,q}(w)$ and $G_{t/b,q}(w)$ with $1 \leq q, r < \gamma$, $||w|| \leq b$ and $1 \leq b \leq \gamma e^{\frac{1}{c_{q,r}}}$ are equi-uniformly continuous functions of t on [0, b]. (d) For every $0 \le t \le 1$, let $G_i(z, x, y) = (u_i, v_i)$, then

$$
\|z\|^p + \|x\|^q + \|y\|^r = \|u_t\|^q + \|v_t\|^p.
$$

(e)
$$
G_0(z, x, y) = (\langle M_{p,q}z, x \rangle, y), G_1(z, x, y) = (x, \langle M_{p,r}z, y \rangle).
$$

PROOF. For a sequence $x = (x_1, x_2, x_3,...)$ of reals put $x^{\circ} = (x_1, x_3, x_5,...)$ and $x^E = (x_2, x_4, x_6,...)$. Observe that in our notation $x = (x^{\circ}, x^E)$.

Define $T: l_p \oplus l_p \rightarrow l_p \oplus l_p$ by

$$
T(x, y) = (xE, \langle xO, y \rangle).
$$

By identifying $l_p \oplus l_p$ with l_p we can consider T as an isometry of l_p onto itself. By [2], GL(l_p) is arcwise connected. By Lemma 3, there are maps $\{F_t | 0 \le t \le 1\}$ which satisfy requirements (a) through (d) of that lemma.

Let $M: l_a \oplus l_c \rightarrow l_b \oplus l_b$ be defined by

$$
M(x, y) = (M_{q,p}(x), M_{r,p}(y)),
$$

and put

$$
G_t = M^{-1}F_tMG_0, \qquad 0 \leq t \leq 1.
$$

It is easy to see that ${G_t | 0 \le t \le 1}$ satisfy the requirements of the lemma. \square

Of course, the lemma holds (with only minor changes in notation) also in the case of *Lp* spaces. With Lemma 4 at our disposal we can now follow Ribe's argument to complete the proof of Theorem 1. What follows is a reformulation of the argument in Ribe's paper [3].

PROOF OF THEOREM 1. Without loss of generality we can assume that for every n

$$
\left|\frac{p_n}{p}-1\right|<\frac{\alpha}{pn}
$$

where $0 < \alpha < 1/100$.

For every $y \in l_p \bigoplus X$, $y = (x_0, x_1, x_2, \dots)$ define

$$
u_n(y) = \left(\left(\|x_0\|^p + \|x_n\|^{p_n} + \|x_{n+1}\|^{p_{n+1}} \right)^{q/p} + \sum_{i \neq 0, n, n+1} \|x_i\|^q \right)^{1/q}.
$$

We consider X in an obvious way as a subspace of $l_p \oplus X$, and thus functions like

 u_n are also defined on X. Let $d = 10^{10}$ and let $b = 10d^\alpha$. Then $1 \le b \le d^{1/8}$, and for every $x, y \in l_p \oplus X$ satisfying

$$
||x||, ||y|| \leq d^n \quad \text{or} \quad u_n(x), u_n(y) \leq d^n
$$

we have

$$
\frac{1}{b}\|x\|\leq u_n(x)\leq b\|x\|
$$

and

$$
|u_n(x)-u_n(y)|\leq b||x-y||.
$$

Denote now for every $n \ge 1$:

$$
A_n = \{ y \in l_p \oplus X : d^{n-1} \leq ||y|| \leq d^n \},
$$

\n
$$
B_n = \{ y \in l_p \oplus X : b^3 d^{n-1} \leq u_n(y) \leq d^n / b^3 \},
$$

\n
$$
B_n^- = \{ y \in l_p \oplus X : u_n(y) \leq b^3 d^{n-1} \},
$$

\n
$$
B_n^+ = \{ y \in l_p \oplus X : u_n(y) \geq d^n / b^3 \},
$$

 $C_n = A_n \cup (B_{n-1}^+ \cap A_{n-1}) \cup (B_{n+1}^- \cap A_{n+1})$ (where B_0^+ is the empty set).

Define now for every $y \in l_p \oplus X$

$$
t_n(y) = \begin{cases} 0, & y \in B_n^-, \\ \frac{u_n(y) - b^3 d^{n-1}}{d^n / b^3 - b^3 d^{n-1}}, & y \in B_n, \\ 1, & y \in B_n^+.\end{cases}
$$

Clearly $0 \le t_n(y) \le 1$ for all *n* and *y*.

For every *n*, let P_n be the projection of $l_p \bigoplus X$ on $l_p \bigoplus l_{p_n} \bigoplus l_{p_{n+1}}$, and let $Q_n = I - P_n$.

We define now $h: l_p \oplus X \to X$. If $y \in A_n$, $n \ge 2$ we define

$$
h(y)=G_{t_n(y),p_n,p_{n+1}}(P_n(y))\bigoplus O_n(y)
$$

and for $||y|| \leq d$, we define

$$
h(y) = G_{1,p_1,p_2}(P_2(y)) \bigoplus Q_2(y).
$$

It is easy to see that for every n and for every $y \in B_n^+ \cap B_{n+1}^-$ we have

$$
h(y) = G_{1,p_n,p_{n+1}}(P_n(y)) \oplus Q_n(y) = G_{0,p_{n+1},p_{n+2}}(P_{n+1}(y)) \oplus Q_{n+1}(y).
$$

Since $\{x : ||x|| = d^n\} \subset B_n^* \cap B_{n+1}^-$, it follows that the definition of h is consistent.

We shall prove now that h is a uniform homeomorphism. Notice first that for every $y \in C_n$, $u_n(h(y)) = u_n(y)$. Hence $h(B_n) \subset B_n \cap X$ for every *n*.

It is also clear that for every $n \ge 1$

$$
h((B_n^+\cap A_n)\cup (B_{n+1}^-\cap A_{n+1}))\subset [(B_n^+\cap A_n)\cup (B_{n+1}^-\cap A_{n+1})]\cap X.
$$

Hence $h(C_n) \subset C_n \cap X$ for every *n*.

Now for every $y_1, y_2 \in l_p \bigoplus X$ such that $||y_1-y_2|| \leq 1$, there exists an $n \geq 1$ such that $y_1, y_2 \in C_n$. Hence for $i = 1, 2$

$$
h(y_i) = G_{t_n(y_i), p_n, p_{n+1}}(P_n(y_i)) \oplus O_n(y_i).
$$

The uniform continuity of h follows now by (b) and (c) of Lemma 4.

Notice that for every $x \in C_n \cap X$, $h^{-1}(x) = G_{i_n(x),p_n,p_{n+1}}^{-1}(P_n(x)) \oplus Q_n(x)$. Hence, by the same reasoning, h^{-1} is uniformly continuous. This proves the theorem. \Box

REFERENCES

1. P. Mankiewicz, *On the differentiability of Lipschitz mappings in Frechét spaces*, Studia Math. 45 (1973), 15-29.

2. B. S. Mitjagin, *The homotopy structure of the linear group of a Banach space,* Russian Math. Surv. 25 (1970), 59-103.

3. M. Ribe, *Existence of separable uniformly homeomorphic nonisomorphic Banach spaces,* Isr. J. Math. 48 (1984), 139-147.