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ABSTRACT 

It is proved that for every 1 =<p < ~ ,  1 ~ q < ~  and for every sequence {po}, 
l=<p.<c~, p.---~p, the space X = ( E @ l p . ) ,  (resp. U=(E@Lp.(O,1))q) is 
uniformly homeomorphic to X O  lp (resp. U~)Lp(0,  1)). This extends Ribe's 
result from the case p = 1 to general p < ~ and thus provides examples of 
uniformly convex, uniformly homeomorphic Banach spaces which are not 
Lipschitz equivalent. 

Recently Ribe [3] solved the problem of existence of two separable infinite- 

dimensional Banach spaces which are uniformly homeomorphic,  but not 

Lipschitz equivalent. His example was X = (E•Lp.)q and X OLp where 

1 < q < ~, 1 < p. < ~, p, ~ p and p = 1. As he noted at the end of his paper, his 

proof does not seem to apply to p > 1. Since it is desirable to have examples 

which are superreflexive, there is some interest in extending Ribe's result to the 

case p > 1. In this note we point out how to modify slightly Ribe's argument so 

as to apply for all 1 <_-p < ~. 

Our main result is the following: 

THEOREM 1. Let l = < p < ~ ,  {p,}~-i satisfy l = < p . < ~  and l imp. =p .  Let 
1 <=q <0% a n d l e tX  = (Y~O lp.)q (resp. U = ( E O  Lp.(0, 1))q). ThenX(resp. U) is 
uniformly homeomorphic to Y =  X ~]~ lp (resp. V = U ~]~ Lp(O, 1)). 

It is clear that for p, ~ p, q ~ p, X does not contain any subspace isomorphic to 

l,. Hence, cf. [1], Y is not Lipschitz homeomorphic to any subset of X. 

To prove the theorem we need some lemmas. 
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LEMMA 2. For every positive real number c~, there exists a [3 = [3 (ct) > 0 such 

that for every Banach space X, and for every linear operator T from X onto X 

satisfying for every x E X 

Z II x lI ~ ll Tx ll ~ ~ ll x ll, 
Ol 

the function S : X --> X defined by 

llxll, rx x / O  
Sx = I1 Tx ]1 ' 

0, x = 0  

is a Lipschitz homeomorphism of X onto itself satisfying for every x, y E X 

~ []x-yl[<=l[Sx-Syll<=/3ll  x -  yl[. 

PROOF. By direct verification it is checked that/3 = 20/2 + 1 works. [] 

As a consequence we get: 

LEMMA 3. Let X be a Banach space for which GL(X) ( =  the group of 

isomorphisms) is connected. Then for every invertible isometry T of X onto itself, 

there exist maps {F, 10_ -< t _-< 1} from X onto itself satisfying: 

(a) Fo = I, F1 = T; 

(b) {F, 10_-< t =< l} are equi-Lipschitz homeomorphisms 

(i.e. ~ K  > 0 such that for every x, y @ X and every 0 <= t ~ 1, 

(1/K)llx - y [I -< [IF, x - F,y l[ =< K IIx - y II), 

(c) for every 0 <~ t <~ 1 and for every x ~ X, HF, x I1 = tl x 1t; 
(d) there exists a K > 0 such that for every x E X and for every 0 <= t, s <= 1, 

IIF, x - E x l l < = g l t - s l  IIx II, 

IIf . 'x - F . 'x  II --< K i t -  s[ IIx II. 

PROOF. Since GL(X)  is arcwise connected, there exists a continuous map 

g :[0, 1 ] ~ G L ( X )  such that g ( 0 ) = / ,  g (1)=  T. Without loss of generality, g 

satisfies a Lipschitz condition (g can even be taken as a piecewise linear map). It 

is also clear that the maps Ig(t)tO <= t <-1} are equi-isomorphisms of X (i.e., 

there exists Kt > 0 such that for every 0 _-< t = 1 and for every x E X, I1 x ][/K, =< 

I lg( t ) (x) l l  <-- g,  llx [I). 
Define now, for every 0 =< t _-< 1, 
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Note that 

I lxl lg( t ) (x)  x / O ,  
f , ( x ) =  IIg(t)(x)ll ' 

0, x = 0 .  

{ ltxllg(t)-~(x) x / O ,  
F : ~ ( x )  = Ilg(t)-'(x)ll ' 

0, x = 0 .  

Using Lemma 2, it is easy to see that the maps (v, 10_-< t =< 1} satisfy the 

requirements of the lemma. [] 

Before stating the next lemma we recall the definition of Mazur's map 

Mp.q:lp--~lq, l_-<p,q < ~ :  

Mp.qx(i) = signx(i)[x(i)]  p/q, i = 1,2 . . . . .  

It is easy to check, and well known, that for all p, q and x, II Mpqx II q -- II x II p, and 
that for every y > 0 the maps {Mp.q I 1 _-< p, q < ~} are equi-uniformly continuous 

on {x ;I]x II-<-T el/'p-ql} (see e.g. [3] lemma 1). 

We are going to use the following notation: for two sequences x = 

(xl, x2, x3, . . .  ) and y = (y~, y2, . . .  ) of real numbers we let (x, y) be the sequence 

(xl,  yl, x2, y,_ . . . .  ). In the direct sum Ip 0 lq @ L we take as the norm of an 

element the sum of the norms of its three components. 

LEMMA 4. Let 1 ~ p < ~. Then for every 1 <_ q, r < ~ there exist maps 

{G, = G , , , , : l p O l q @ l , - - ~ l o O l r  10=< t =<1} 

such that: 

(a) For every 0 <- t <- 1, G, is a one to one map onto lq • L. 

(b) For every ~ > 1 the maps 

{G,.qr l O < = t = l , l  <=q,r < y} 

are equi-uniformly continuous on the sets 

Dq., ={w E Ip @ I, Ol r  ] l lw l l=  < re ~/%'} 

where cq., = m a x { l p  - q l, [P - r  I}, and the maps 

{G;?~. , lo<tZl ,  = 

are equi-uniformly continuous on the sets G,,,r(D,~). 
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(c) For every y > 1, the ,maps G,ib,q,~w) and G,-l~.,,(w) with 1 <= q, r < y, 

II w II <= b and 1 <- b <= 3'e "Cq'r are equi-  uniformly continuous functions of  t on [0, b]. 

(all For every 0 <= t <-<_ 1, let G,(z,  x, y) = (u,, v,), then 

II z IIp ÷ II x II" + II y 11' = II u, II q + II v, II p. 

(e) Go(z, x, y) = ((Mp, qz, x) ,  y), G~(z, x, y) = (x, (Mp.,z, y)). 

PROOF. For a sequence x = (X l ,X2 ,X3 , . . . )  of reals put x ° = (x~,x3,x5 . . . .  ) 

and x z = (x~_, x4, x6 , . . .  ). Observe that in our notation x = (x °, x~) .  

Define T : l p O l p - - * I p O l p  by 

r(x,  y) = (x ~, (x o, y)). 

By identifying lp e lp with lp we can consider T as an isometry of lp onto itself. 

By [2], GL(lp) is arcwise connected. By Lemma 3, there are maps {F, J0 =< t =< 1} 

which satisfy requirements (a) through (d) of that lemma. 

Let M : lq O l, ~ Ip 0 lp be defined by 

M(x, y) = (M,p (x ) ,  M,,, (y)), 

and put 

G, = M -~F,MGo, 0 < t =< 1. 

It is easy to see that {G, { 0 <= t _-< 1} satisfy the requirements of the lemma. [] 

Of course, the lemma holds (with only minor changes in notation) also in the 

case of Lp spaces. With Lemma 4 at our disposal we can now follow Ribe's 

argument to complete the proof of Theorem 1. What follows is a reformulation 

of the argument in Ribe's paper [3]. 

PROOF OF THEOREM 1. 

every n 

Without loss of generality we can assume that for 

Z II x, II ~)''q. 
i#O,n,n+l 

- 1  < ~ -  

We consider X in an obvious way as a subspace of I, @ X, and thus functions like 

where 0 < a < 1/100. 

For every y E lp • X, y = (xo, x~, x2 . . . .  ) define 

u. ~y) = (~ II Xoll P + II x.  liP° + I1 x°+, ),,P +1 + 
\ 
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u. are also defined on X. Let  d = 101'1 and let b = lOd". Then  1 < b < d 1/8, and 

for every  x, y E lp @ X satisfying 

Ilxlt, tlyll_-< d" 

we have 

and 

o r  u.(x) ,u.(y)<=d" 

1 
~llx II ~ ~.(x)  ~ b IIx II 

I u. ( x ) -  u. (y)l  _-< b ]Ix - y ]1. 

Deno t e  now for every  n => 1: 

A .  = { y  E lp O X : d "  '_-<llytl_ -< d"}, 

B.  = {y E Iv @ X : b 3 d " - ' ~  u. (y)<-- d"/b3}, 

B .  = {y E lp O X :  u . ( y )  = < b3d"-'}, 

B + = { y  E/p  @ X : u . ( y ) = >  d"/b3}, 

C. = A.  tO (B + , n A .  1) U (B;+I n A.+,) (where B(~ is the empty  set). 

Define now for every  y C/p @ X 

0, y E B ; ,  

b3d . ~ 
u . ( y ) -  b3d" . y ~ B . ,  t . ( y ) =  d . / b  3_ , 

1, y ~ B .  +. 

Clearly 0 - t . ( y ) _ - < l  for  all n and y. 

For  every  n, let /9. be the project ion of Ip ~ X on lp @ le. G lp . . . .  and let 

Q. = I - P . .  
We define now h : lp @ X--+ X. If y E A . ,  n > 2 we define 

h ( y )  = G,.t,),p.,p.+, (P. (y)) @ Q . ( y )  

and for tlY II =< d, we define 

h ( y )  = O,.p,.p.(P2(y))@ O2(y). 

It is easy to see that for every  n and for every  y E B .  + n B.+1 we have 

h(y)  = G,,p.,p.~,(P,,(y))O O . ( y )  = G,,.p.+,,p.+2(P,,+,(y))~ O.+, (y).  



64 I. AHARONI AND J. LINDENSTRAUSS Isr. J. Math. 

Since {x :Hx II = d"} c B + n B~+,,  it follows that  the definit ion of h is consistent .  

We  shall p rove  now that  h is a un i form h o m e o m o r p h i s m .  Not ice  first that  for  

every  y E C, ,  u . ( h ( y ) )  = u , (y ) .  H e n c e  h ( B . ) C B ,  n x for  every  n. 

It is also clear that  for  every  n _-> 1 

h ((B .+ n A.  ) U (B.+, n A.+I)) c [(B .+ n A.  ) U (B .+, n A.  +,)] n x.  

H e n c e  h ( C o ) C C ,  n x  for  every  n. 

Now for  every  y l , y : E  lp O X  such that  Ilyl-y211 --< 1, there  exists an n => 1 

such that  y l , y 2 E  C,.  H e n c e  for  i = 1,2 

h(y~) = G,°(y,),p..p..,(P.(y~))@ O.(y , ) .  

The  un i form continui ty of h follows now by (b) and (c) of L e m m a  4. 

Not ice  that  for  every  x E (7, n X, h - l ( x )  = G,l(x), , . ,p,+,(Po(x))~ O , ( x ) .  

Hence ,  by the same  reasoning,  h -~ is uni formly cont inuous .  This  p roves  the 

theo rem.  [ ]  
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