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ABSTRACT

It is proved that for every 1=p <o, 1 =¢q < and for every sequence {p,},
1=p, <, p,—p, the space X=0CPL,), (resp. U=CPL, (0,1)),) is
uniformly homeomorphic to X @1, (resp. U@ L,(0,1)). This extends Ribe’s
result from the case p =1 to general p <« and thus provides examples of
uniformly convex, uniformly homeomorphic Banach spaces which are not
Lipschitz equivalent.

Recently Ribe [3] solved the problem of existence of two separable infinite-
dimensional Banach spaces which are uniformly homeomorphic, but not
Lipschitz equivalent. His example was X =(2&@ L, ), and XL, where
1< g <o, 1<p,<», p,—p and p = 1. As he noted at the end of his paper, his
proof does not seem to apply to p >1. Since it is desirable to have examples
which are superreflexive, there is some interest in extending Ribe’s result to the
case p > 1. In this note we point out how to modify slightly Ribe’s argument so
as to apply for all 1=p <.

Our main result is the following:

THEOREM 1. Let 1=p <o, {p,},_: satisfy 1=p, <~ and limp, =p. Let
1=g<w,andlet X =ED1L,), (resp. U=ZPL,,(0,1)),). Then X (resp. U) is
uniformly homeomorphic to Y = X @1, (resp. V=UPL,(0,1)).

It is clear that for p, # p, g # p, X does not contain any subspace isomorphic to
l,. Hence, cf. [1], Y is not Lipschitz homeomorphic to any subset of X.
To prove the theorem we need some lemmas.
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LEMMA 2. For every positive real number a, there exists a B = B(a)>0 such
that for every Banach space X, and for every linear operator T from X onto X
satisfying for every x € X

1
L= = alx].

the function S : X — X defined by

x|-Tx
oo I 70

0, x=0

is a Lipschitz homeomorphism of X onto itself satisfying for every x,y € X

1
glx—yl=lsx=Syl=plx -yl

Proor. By direct verification it is checked that 8 =2a” + 1 works. d
As a consequence we get:

Lemma 3. Let X be a Banach space for which GL(X) (= the group of
isomorphisms) is connected. Then for every invertible isometry T of X onto itself,
there exist maps {F, lOé t =1} from X onio itself satisfying:

() Fo=L F,=T;

(b) {F, 'Oé t =1} are equi-Lipschitz homeomorphisms

(i.e. 3K >0 such that for every x,y € X and every 0=t =1,
WK)x —yl=|Fx - Fy|=K|x =y
(c) for every 0=t =1 and for every x € X, ||Ex||=|x];
(d) there exists a K >0 such that for every x € X and for every 0 =1t,5s =1,

|Fx - Fx||= K[t —s||x],
IF'x —F.'x[|=K[t—s[]x].

ProoF. Since GL(X) is arcwise connected, there exists a continuous map
g:[0,1] = GL(X) such that g(0)=1, g(1)= T. Without loss of generality, g
satisfies a Lipschitz condition (g can even be taken as a piecewise linear map). It
is also clear that the maps { g(t)’()é t =1} are equi-isomorphisms of X (i.e.,
there exists K, > 0 such that for every 0=¢ =1 and for every x € X, | x || K, =

g )= K] x|).
Define now, for every 0=t =1,
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[ || x g(t)(x)

=1 Tso@ > "
LO, x =0.
Note that

~

[xlg@®)'(x)
Fip =4 Tgo el ¥ %

L0, x =0.

Using Lemma 2, it is easy to see that the maps {F, IOé t =1} satisfy the
requirements of the lemma. O

Before stating the next lemma we recall the definition of Mazur’s map
M, b=, 1=pq<o:

M, x(i)=signx()| x4, i=1,2,....

It is easy to check, and well known, that for all p,q and x, | M, .x |* =] x|F, and
that for every y > 0 the maps {M,, , 1 = p, g <} are equi-uniformly continuous
on {x;||x||= ye"? "} (see e.g. [3] lemma 1).

We are going to use the following notation: for two sequences x =
(x1,%2,%5,...)and y =(y1, y2,...) of real numbers we let (x, y) be the sequence
(X1, y1,%2,¥2,...). In the direct sum [, P, I we take as the norm of an
element the sum of the norms of its three components.

LemMMA 4. Let 1=p <. Then for every 1=gq,r <o there exist maps

(G=G LBLBL—>L,DL|0=t=1)

such that:
(a) For every 0=t =1, G, is a one to one map onto I, P 1.
(b) For every v > 1 the maps

(G, [0=1=1,1=¢,r <}
are equi-uniformly continuous on the sets
D, ={wel, LBl

where ¢,, =max{|p —q/|,|p —r|}, and the maps

lw = ye "}

(GilLl0st=1,15¢qr<v}

are equi-uniformly continuous on the sets G.,,(D,.).
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(c) For every y>1, the maps G oo dw) and G Aw) with 1=q,r<y,
[w|=band 1= b = ye'“ are equi-uniformly continuous functions of t on [0, b].
(d) For every 0=t =1, let G,(z,x,y)=(u, v.), then

Iz I+l +ly I =lw ) + ol
(€) Golz,x,y) = ((Mya2, x), y), Gilz,%,y) = (x, (M2, y)).
Proor. For a sequence x = (X:, Xz, Xs,...) of reals put x® = (x;,x3,%s,...)

and x% = (x,, X4, X6, ...). Observe that in our notation x =(x°,x®).
Define T:I, D1, -1, B, by

T(x,y)=(x"(x"y)).

By identifying [, @ [, with [, we can consider T as an isometry of I, onto itself.
By [2], GL(},) is arcwise connected. By Lemma 3, there are maps {F, lO =t=1}
which satisfy requirements (a) through (d) of that lemma.

Let M: I, B — 1, @I, be defined by

M(x,y) = (M, (x), M, (),
and put
G, =M 'EMG,, 0=t=1.
It is easy to see that {G, | 0 = t =1} satisfy the requirements of the lemma. O

Of course, the lemma holds (with only minor changes in notation) also in the
case of L, spaces. With Lemma 4 at our disposal we can now follow Ribe’s
argument to complete the proof of Theorem 1. What follows is a reformulation
of the argument in Ribe’s paper [3].

PrROOF OF THEOREM 1. Without loss of generality we can assume that for
every n

&'__1 ' <ﬁ
p pn

where 0< a < 1/100.
Forevery yEL DX, y =(x0,%1,X2,...) define

1/q

n + “ X+t

) = (el +11x e+ Sl

We consider X in an obvious way as a subspace of [, @ X, and thus functions like
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u, are also defined on X. Let d =10" and let b =10d*. Then 1< b < d"*, and
for every x,y € [, @ X satisfying

Ixlilyl=d" or w(x),u.(y)=d"

we have
1
plxl=u(x)=bllx|

and
[, (x) = un (y)| = blx -yl
Denote now for every n = 1:
A=y EL®X:d" ' =|y|=d"),
B.={y€lL,®X:bd""'=u,(y)=d"/b},
B.={yeL®X:u.(y)=b’d"'},
Bi={yEL®X :u.(y)=d"/b},
C.=A.UB,.\NA,)UB..NA,.L) (where By is the empty set).

Define now for every yE€ [, X

0, y €B,,

_ un( )_bSdnrl
tn(y)— dn/b}_bf‘dnfl ] y EB,,,
1, y €EB,.

Clearly 0=t.(y)=1 for all n and y.

For every n, let P, be the projection of , X on Pl P, ., and let
Q,=1-P,.

We define now h: [, DX —>X. If y E A,, n =2 we define

h(Y) = G'n(y).p.,vp..u (Pn (Y))GB Oﬂ (y)

and for ||y || = d, we define

h(y) = G 1p.p. (Po(y)) D QuAy).

It is easy to see that for every n and for every y € B, N B, we have

h(¥) = Gippp, (P (9D Qu(¥) = Gopy s (Pari(p)) D Onr ()
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Since {x :||x||=d"}C B, N B .., it follows that the definition of h is consistent.
We shall prove now that h is a uniform homeomorphism. Notice first that for
every y € C,, u.(h(y))= u,(y). Hence h(B,)CB. N X for every n.
It is also clear that for every n =1

h((B; N A)U (BN A)C[(Bi N A)UB N A N X.

Hence h(C.)CC, N X for every n.
Now for every yi,y, €, (B X such that ||y, — y.|| =1, there exists an n =1
such that y,,y,€ C,. Hence for i =1,2

h(y:) = G..530m00: (P (3:)) D Qn (31).

The uniform continuity of & follows now by (b) and (c) of Lemma 4.

Notice that for every x€C. NX, h'(x)= G, pp., (Pa(x)D Q. (x).
Hence, by the same reasoning, h™' is uniformly continuous. This proves the
theorem. O
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